<u>Year 5 Maths</u>

	Counting
Objectives	interpret negative numbers in context, count forwards and backwards with
	positive and negative whole numbers, including through zero
	count forwards or backwards in steps of powers of 10 for any given number
	up to 1000 000
Reasoning	Spot the mistake:
	177000,187000,197000,217000
	What is wrong with this sequence of numbers?
	True or False?
	When I count in 10's I will say the number 10100?
	What comes next?
	646000-10000= 636000
	636000 -10000 = 626000
	626000- 10000 = 616000
Vocabulary	factor pair
	≥ greater than or equal to
	≤ less than or equal to
	formula
	divisibility
	square number
	prime number ascending/descending order
	composite
	place value
	tens, hundreds, thousands, ten thousands, hundred thousands, millions
Resources /	For negative numbers have a vertical number line
models	Use thermometers
	place value grids
	base 10 materials
	place value counters

Comparing numbers		
Objectives	read, write, order and compare numbers to at least 1 000 000 and determine	
-	the value of each digit	
	(appears also in Reading and Writing Numbers)	
Reasoning	Do, then explain	
	747014 774014 747017 774077 744444	
	If you wrote these numbers in order starting with the smallest, which number would be third?	
	Explain how you ordered the numbers.	

Vocabulary	place value grids
	line the numbers up under each other.

READING AND WRITING NUMBERS		
	(including Roman Numerals)	
Objectives	read, write, order and compare numbers to at least 1 000 000 and determine	
	the value of each digit	
	(appears also in Comparing Numbers)	
	read Roman numerals to 1000 (M) and recognise years written in Roman	
	numerais.	
Reasoning	True or false?	
	What year comes next?	
Resources /	clock faces	
models	calendars	
	book pages	
	(Link back to Romans taught in Year 3)	

	UNDERSTANDING PLACE VALUE
Objectives	read, write, order and compare numbers to at least 1 000 000 and determine
	the value of each digit
	(appears also in Reading and Writing Numbers)
	recognise and use thousandths and relate them to tenths, hundredths and
	decimal equivalents
	(copied from Fractions)
Reasoning	Do, then explain
	Show the value of the digit 5 in these numbers?
	350114 567432 985376
	Explain how you know.
	Make up an example Give further examples
	Create six digit numbers where the digit sum is five and the thousands digit
	is two.
	Eg 3002000 2102000
	What is the largest/smallest number?

ROUNDING		
Objectives	round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000	

	round decimals with two decimal places to the nearest whole number and to one
	decimal place
	(copied from Fractions)
Reasoning	Possible answers
	A number rounded to the nearest thousand is 76000 What is the largest
	possible number it could be?
	What do you notice?
	Round 343997 to the nearest 1000. Round it to the nearest 10000. What do
	you notice? Can you suggest other numbers like this?
Vocabulary	Round to the nearest ten thousand
Resources /	number lines
Models	place value grids
	Outdoor learning - draw a large number line on the playground and move to
	the numbers and move round up or round down.
	Misconception - rounding down - some children round down too far.
Objective -	solve number problems and practical problems that involve all of the above
Problem	
Solving	

	Addition and Subtraction	
Objectives -	add and subtract numbers mentally with increasingly large numbers	
Mental		
Calculation		
Reasoning	True or false?	
_	Are these number sentences true or false?6.17 + 0.4 = 6.57	
	8.12 - 0.9 = 8.3	
	Give your reasons.	
	Hard and easy questions	
	Which questions are easy / hard?	
	213323 - 70 =	
	512893 + 300 =	
	819354 - 500 =	
	319954 + 100 =	
	Explain why you think the hard questions are hard?	
Vocabulary	ones boundary, tenths boundary, decimal place, place value, number bonds	

Resources/	place value grids	
Objectives - WRITTEN METHODS	add and subtract whole numbers with more than formal written methods (columnar addition and s	4 digits, including using subtraction)
Reasoning	Convince me	
	+ 1475 = 6 24 What numbers go in the boxes? What different answers are there? Convince me	
Vocabulary - addition	add, more, plus, and, make, altogether, total, equal to, number line, sum, tens, ones, partition, addition, colun boundary, increase, vertical, 'carry', expanded, compac inverse decimal places, decimal point, tenths, hundredths, tho	, equals, double, most, count on, nn ,tens boundary, hundreds t, thousands, hundreds, digits, usandths
Resources / models	cubes, base 10 counters number lines number square place value grid	
	2 3 4 8 1 + 1 3 6 2	When the children show a good understanding of number they will move on
	2 4 8 4 3	to the compact column method with carrying
	1	The carried over number is written below the line. Also they can add a different number of digits together.
	£ 2 3•5 9	Children can add different amounts of money together. Remind
	+ £ 7•5 5	points lined up.
	£ 3 1•1 4	
	1 1 1	

Objective	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
Reasoning	Making an estimate Which of these number sentences have the answer that is between 0.5 and 0.6 11.74 - 11.18 33.3 - 32.71 Always, sometimes, never
	Is it always, sometimes or never true that the sum of four even numbers is divisible by 4.
Objective - Problem Solving	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

MULTIPLICATION & DIVISION FACTS	
Objectives -	count forwards or backwards in steps of powers of 10 for any given number
facts	up to 1 000 000
	(copied from Number and Place Value)
Reasoning	Missing numbers
	$6 \times 0.9 = 2 \times 0.03$
	6 × 0.04 = 0.008 ×
	Which numbers could be written in the boxes?
	Making links Apples weigh about 170 g each. How many apples would you
	expect to get in a 2 kg bag?
Vocabulary	place value grids
	counters
	MULTIPLICATION & DIVISION Mental calculations
Objectives	multiply and divide numbers mentally drawing upon known facts
	multiply and divide whole numbers and those involving decimals by 10, 100 and 1000
Reasoning	Use a fact
	3 x 75 = 225
	Use this fact to work out
	450 ÷ 6 =
	225 ÷ 0.6 =

	To multiply by 25 you multiply by 100 and then divide by 4. Use this strategy to solve 48 x 25 78 x 25 4.6 x 25
	Making links $7 \times 8 = 56$ How can you use this fact to solve these calculations? $0.7 \times 0.8 =$ $5.6 \div 8 =$
Vocabulary	divisible

	MULTIPLICATION & DIVISION Written	Calculations
Objectives	multiply numbers up to 4 digits by a one- or written method, including long multiplication	[,] two-digit number using a formal n for two-digit numbers
Reasoning	Prove It What goes in the missing box? $12 extsf{2} \div 6 = 212$ $14 extsf{4} \div 7 = 212$ $22 extsf{3} \div 7 = 321 \text{ r } 6$ $323 \text{ x} extsf{1} = 13243$ Prove it.	
Vocabulary	groups of, lots of, times, array, altogether, multiplied by, column, row, repeated additic groups, times as big as, once, twice, three multiple, product, tens, units, value square, long multiplication, 'carry'	multiply, total, count up in, on, commutative, sets of, equal e times etc. partition, grid method, factor, integer, decimal, short /
Resources / Models	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	The grid method develops children's understanding of the values of the numbers involved.
	3000 400 60 4	The grid can be extended for the number of digits required.

	9	27000	3600	540	36	=	31176	Again showing the value of each
	3	9000	1200	180	12	=	10392	digit in the number.
							11568	This method can also be used
							41500	with decimal numbers.
							1	
		,	23					The grid method moves onto a
		/	<u> 8</u> 24					long multiplication layout.
		+	<u>160</u>					
	2	3	184					Which quickly moves onto the
	X	8 🔨	Childre	n need	remii	ndin	g	short multiplication method as
	18	4	here th	at they	are v	vork	ing	the children understand what is
	2		out 20	x 8, not	t 2 x 8	•		happening with the numbers
		72 X 29						For calculations with TU x TU or
	4	<u>^ 30</u> 16						HTU x TU children should use the
		560						iong multiplication method.
		60						
		<u>2 100</u> 2 736						
		1						
Objective	divi	ide numb	ers up t	o 4 di	gits b	oy a	one-digi	t number using the formal written
	met	thod of s	hort div	vision	and i	nter	rpret ren	nainders appropriately for the
	con	text						
Vocabulary	sha	re, share	e equally	, one	each,	, tw	o each,	group, groups of, lots of, array,
- Division		ide, divid	ed by, c		i into	, di	vision, gr	ouping, number line, left, left over,
	inve	erse, sno	rt aivis	ion, co	irry,	ren	nainaer, i	muitipie,
		tiont pr	Tactor,	, chunr	king	for	store con	nnosite number (non-prime)
Models /	quo	nem, pr	2	1 8	i ine	Tuc	.1015, 001	Chunking
resources			4 8	72				Top tip : Children to subtract
			- 8	00	(200) x (4)	chunks they are most
			07	70				comfortable with
			- 4	0 (10 x	4)		Work out 2x
			3	32		,		5x
				32	(<u>8</u> ×	(4))	10x
				0				
	4	356 ÷ 5						This will lead to short division but
			_0	87	<u> 1 </u> r	1		only when the children have a good
			5)4	⁴ 3 ³ 5	6			understanding of the numbers. E.g.
	Ans	swers car	n be as i	a rem	ainde	r 8	71r1	now many 3 s are in /U. A link to
	Ans	swer can	be as a	fract	ion 8	71 ¹	¹ /5	here.

	Answer can be as a decimal 871.2 by	Children will learn what to do with	
	continuing the short division calculation	the remainder in a calculation so	
	after the decimal point	they can make the right choice of	
	0 8 7 1 2	answer when solving problems.	
	$5 \overline{)} 4^{4}3^{3}5 6^{1}0$		
	5) + 3 50.0		
	Answer can be nounded 871		
	Answer can be rounded 0/1		
PROPER	RTIES OF NUMBERS: MULTIPLES, FACTORS, PRIMES	. SOUARE AND CUBE NUMBERS	
Objectives	identify multiples and factors including fin	ding all factor pairs of a number	
j	and common factors of two numbers		
	know and use the vocabulary of prime numb	ers prime factors and composite	
	(non-prime) numbers	ers, prime ractors and composite	
	actablish whether a number up to 100 is pri	me and necall prime numbers up to	
	10	me and recail prime numbers up to	
	recognise and use square numbers and cube	numbers and the notation for	
	(2) and (2) and (3)		
D	squarea () and cubed ()		
Reasoning	Always, sometimes, never?		
	Is it always, sometimes or never true that i	nulfiplying a number always makes	
	it bigger		
	Is it diways, sometimes or never true that p	orime numbers are odd.	
	Ts it always sometimes or never true that when you multiply a whole		
	number by 9, the sum of its digits is also a multiple of 9		
	Ts it always sometimes or never true that a	a square number has an even	
	number of factors		
Vocabularv	arrays, cubes, number squares		
	INVERSE OPERATIONS, ESTIMATING AND CH	ECKING ANSWERS	
Reasoning	Use the inverse		
5	Use the inverse to check if the following ca	lculations are correct:	
	4321 x 12 = 51852		
	507 ÷ 9 = 4563		
	Size of an answer		
	The product of a two digit and three digit r	number is approximately 6500.	
	What could the numbers be?	······	
	PROBLEM SOLVING		
Objective	solve problems involving multiplication and c	livision including using their	
	knowledge of factors and multiples, squares	and cubes	
	solve problems involving addition, subtraction	on, multiplication and division and a	
	combination of these, including understandi	ng the meaning of the equals sign	

I	solve problems involving multiplication and division, including scaling by simple
	fractions and problems involving simple rates

	COUNTING IN FRACTIONAL STEPS
Reasoning	Spot the mistake
	0.088, 0.089, 1.0
	What comes next?
	1 172 1 102 1 102
	1.173, 1.183, 1.193
Vocabulary	Proper/improper fraction
	Equivalent
	Reduced to, cancel
	Thousandths
	In every, for every
	Percentage
	Per cent
	%

	RECOGNISING FRACTIONS
Objectives	recognise and use thousandths and relate them to tenths, hundredths and
	decimal equivalents
	(appears also in Equivalence)
Reasoning	What do you notice?
	One tenth of £41
	One hundredth of £41
	One thousandth of £41
	Continue the pattern
	What do you notice?
	0.085 + 0.015 = 0.1
	0.075 + 0.025 = 0.1
	0.065 + 0.035 = 0.1
	Continue the pattern for the next five number sentences.
	True or false?
	0.1 of a kilometre is 1m.
	0.2 of 2 kilometres is 2m.
	0.3 of 3 Kilometres is 3m
	0.25 of 3m is 500cm.
	2/5 of £2 is 20p

Comparing FRACTIONS		
Objectives	compare and order fractions whose denominators are all multiples of the	
	same number	
Reasoning	Give an example of a fraction that is more than three quarters.	
	Now another example that no one else will think of.	
	Explain how you know the fraction is more than three quarters.	
	Imran put these fractions in order starting with the smallest. Are they in	
	the correct order?	
	Two fifths, three tenths, four twentieths	
	How do you know?	
Vocabulary	equivalent	
Resources /	bar model	
models	fraction strips	

Comparing DECIMALS			
Objectives	read, write, order and compare numbers with up to three decimal places		
Reasoning	Missing symbol		
	Put the correct symbol < or > in each box		
	4.627 🔲 4.06		
	12.317 12.31		
	What needs to be added to 3.63 to give 3.13?		
	What needs to be added to 4.652 to give 4.1?		

	Rounding including DECIMALS
Objectives	round decimals with two decimal places to the nearest whole number and to
-	one decimal place
Reasoning	Do, then explain
	Circle each decimal which when rounded to one decimal place is 6.2.
	6.32 6.23 6.27 6.17
	Explain your reasoning
	Top tips
	Explain how to round decimal numbers to one decimal place?
	Also see rounding in place value

	EQUIVALENCE (INCLUDING FRACTIONS, DECIMALS AND PERCENTAGES)
Objectives	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
	read and write decimal numbers as fractions (e.g. 0.71 = 71 / $_{100}$)

	recognise and use thousandths and relate them to tenths, hundredths and			
	decimal equivalents			
	recognise the per cent symbol (%) and understand that per cent relates to			
	"number of parts per hundred", and write percentages as a fraction with			
	denominator 100 as a decimal fraction			
Reasoning	Odd one out.			
	Which is the odd one out in each of these collections of 4 fractions			
	6/10 3/5 18/20 9/15			
	30/100 3/10 6/20 3/9			
	Why?			
	What do you notice?			
	Find 30/100 of 200			
	Find $3/10$ of 200			
	What do you notice?			
	Can you write any other similar statements?			
	Camplete the nettern			
	$\begin{bmatrix} 71 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\ 22 \\$			
	0./1 0.81 ??? ???			
	Complete the table			
	Another and another			
	Write a fraction with a denominator of one hundred which has a value of			
	mone then 0.752			
	more than 0.75?			
	and another, and another,			
	Ordering			
	Put these numbers in the correct order, starting with the largest.			
	7/10, 0.73, 7/100, 0.073 71%			
	Explain your thinking			
	Which is more:			
	20% of 200 or 25% of 180?			
	Explain your reasoning.			
Vocabulary	In every, for every			
	Percentage			
	Per cent			
	%			

	ADDITION AND SUBTRACTION OF FRACTIONS
Objectives	add and subtract fractions with the same denominator and multiples of the same number
	recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number (e.g. $^{2}/_{5} + ^{4}/_{5} = ^{6}/_{5} = 1^{1}/_{5}$)
Reasoning	What do you notice? $\frac{3}{4}$ and $\frac{1}{4} = 4/4 = 1$ $4/4$ and $\frac{1}{4} = 5/4 = 1$ $\frac{1}{4}$ $5/4$ and $\frac{1}{4} = 6/4 = 1$ $\frac{1}{2}$ Continue the pattern up to the total of 2. Can you make up a similar pattern for subtraction? The answer is 1 2/5, what is the question
Resources / Models	Mixed numbers $\frac{6}{4} = 1\frac{2}{4}$ $\frac{1}{4}$

MULTIPLICATION AND DIVISION OF Fractions	
Objectives	multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
Reasoning	Continue the pattern $\frac{1}{4} \times 3 =$ $\frac{1}{4} \times 4 =$ $\frac{1}{4} \times 5 =$ Continue the pattern for five more number sentences. How many steps will it take to get to 3?
	5/3 of 24 = 40 Write a similar sentence where the answer is 56.
	The answer is $2\frac{1}{4}$, what is the question
	Give your top tips for multiplying tractions.

MULTIPLICATION AND DIVISION OF Decimals	
Reasoning	Undoing I divide a number by 100 and the answer is 0.33 What number did I start with?
	Another and another Write down a number with two decimal places which when multiplied by 100 gives an answer between 33 and 38. and another, and another,

	Problem Solving – Fractions, decimals, percentages
Reasoning	solve problems involving numbers up to three decimal places
	solve problems which require knowing percentage and decimal equivalents of $\frac{1}{2}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}, \frac{4}{5}$ and those with a denominator of a multiple of 10 or 25.

EQUATIONS		
Objective	use the properties of rectangles to deduce related facts and find missing	
-	lengths and angles	
	(copied from Geometry: Properties of Shapes)	
Reasoning	Connected Calculations	
	The number sentence below represents the angles in degrees of an isosceles	
	triangle.	
	A + B + C = 180 degrees	
	A and B are equal and are multiples of 5.	
	Give an example of what the 3 angles could be.	
	Write down 3 more examples	
Vocabulary	formula	
FORMULAE		
Reasoning	Undoing	
	The perimeter of a rectangular garden is between 40 and 50 metres.	
	What could the dimensions of the garden be?	

COMPARING AND ESTIMATING

Objective	calculate and compare the area of squares and rectangles including using
	standard units, square centimetres (cm ²) and square metres (m ²) and
	estimate the area of irregular shapes (also included in measuring)
	estimate volume (e.g. using 1 cm ³ blocks to build cubes and cuboids) and capacity (e.g. using water)
Reasoning	Top Tips
5	Put these amounts in order starting with the largest.
	130000cm ²
	1.2 m ²
	13 m ²
	Explain your thinking
	Undoing
	A school play ends at 6.45pm. The play lasted 2 hours and 35 minutes. What time did it start?
	Other possibilities
	(links with geometry, shape and space)
	A cuboid is made up of 36 smaller cubes.
	If the cuboid has the length of two of its sides the same what could the dimensions be?
	Convince me

	MEASURING and CALCULATING	
Objective	use all four operations to solve problems involving measure (e.g. length,	
-	mass, volume, money) using decimal notation including scaling.	
Reasoning	Write more statements	
	Mr Smith needs to fill buckets of water. A large bucket holds 6 litres and a small bucket holds 4 litres.	
	If a jug holds 250 ml and a bottle holds 500 ml suggest some ways of using	
	the jug and bottle to fill the buckets.	
Objective	measure and calculate the perimeter of composite rectilinear shapes in	
	centimetres and metres	
Reasoning	Testing conditions	
	Shape A is a rectangle that is 4m long and 3m wide.	
	Shape B is a square with sides 3m.	
	The rectangles and squares are put together side by side to make a path	
	which has perimeter between 20 and 30 m.	
	For example	

	Can you draw some other arrangements where the perimeter is between 20 and 30 metres?
Objective	calculate and compare the area of squares and rectangles including using
	standard units, square centimetres (cm ²) and square metres (m ²) and estimate the area of irregular shapes
	recognise and use square numbers and cube numbers, and the notation for squared
	$\binom{2}{3}$ and cubed $\binom{3}{3}$
	(copied from Multiplication and Division)
Reasoning	Always, sometimes, never
	When you cut off a piece of a shape you reduce its area and perimeter.
	See also Geometry Properties of Shape

TELLING THE TIME	
Objectives	solve problems involving converting between units of time
Reasoning	Working backwards Put these lengths of time in order starting with the longest time. 105 minutes 1 hour 51 minutes 6360 seconds

	CONVERTING	
Objectives	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)	
	solve problems involving converting between units of time	
	understand and use equivalences between metric units and common imperial units such as inches, pounds and pints	
Reasoning	The answer is	
	0.3km	
	What is the question?	
	What do you notice? What do you notice?	
	1 minute = 60 seconds	
	60 minutes = seconds	
	Fill in the missing number of seconds	
	down some more time facts like this.	

IDENTIFYING SHAPES AND THIER PROPERTIES	
Objective	identify 3-D shapes, including cubes and other cuboids, from 2-D representations
Reasoning	What's the same, what's different? What is the same and what is different about the net of a cube and the net of a cuboid?
	Visualising I look at a large cube which is made up of smaller cubes.
	If the larger cube is made up of between 50 and 200 smaller cubes what might it look like?
Vocabulary	Radius Diameter Congruent Axis of symmetry Reflective symmetry
	x-axis y-axis quadrant octahedron

DRAWING AND CONSTRUCTING	
Objective	draw given angles, and measure them in degrees (°)
Reasoning	Other possibilities Here is one angle of an isosceles triangle. You will need to measure the angle accurately. What could the other angles of the triangle be? Are there any other possibilities?

COMPARING AND CLASSIFYING	
Objectives	use the properties of rectangles to deduce related facts and find missing lengths and angles
	distinguish between regular and irregular polygons based on reasoning about equal sides and angles
Reasoning	Always, sometimes, never Is it always, sometimes or never true that the number of lines of reflective symmetry in a regular polygon is equal to the number of its sides n.
	Other possibilities A rectangular field has a perimeter between 14 and 20 metres . What could its dimensions be?

Angles		
Objectives	know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
	identify:	
	\ast angles at a point and one whole turn (total 360 $^{\circ}$)	
	* angles at a point on a straight line and $\frac{1}{2}$ a turn (total 180°)	
	* other multiples of 90°	
Reasoning	Convince me	
	What is the angle between the hands of a clock at four o clock?	
	At what other times is the angle between the hands the same?	
	Convince me	
Vocabulary	acute, obtuse, right angle, estimate, order, measure	

POSITION, DIRECTION AND MOVEMENT		
Objectives	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the	
	shape has not changed	

Reasoning	Working backwards
	A square is translated 3 squares down and one square to the right.
	Three of the coordinates of the translated square are:
	(3, 6) (8, 11) (8, 6)
	What are the co-ordinates of the original square?
Vocabulary	Coordinate
	x axis
	y axis
	Protractor

INTERPRETING, CONSTRUCTING AND PRESENTING DATA		
Objectives	complete, read and interpret information in tables, including timetables	
Reasoning	True or false? (Looking at a train time table) "If I want to get to Exeter by	
	4 o'clock this afternoon, I will need to get to Taunton station before	
	midday".	
	Is this true or false?	
	Convince me.	
	Make up your own 'true/false' statement about a journey using the timetable.	
	What's the same, what's different?	
	Pupils identify similarities and differences between different	
	representations and explain them to each other	
Vocabulary	Database	
	bar line chart	
	line graph	
	maximum/minimum value	
	outcome	

SOLVING PROBLEMS		
Objectives	solve comparison, sum and difference problems using information presented in a line graph	
Reasoning	Create questions Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives. (see above)	